Algebraic number fields generated by an infinite family of monogenic trinomials
نویسندگان
چکیده
For an infinite family of monogenic trinomials \(P(X)=X^3\pm 3rbX-b\in {\mathbb {Z}}[X]\), arithmetical invariants the cubic number field \(L={\mathbb {Q}}(\theta )\), generated by a zero \(\theta\) \(P(X)\), and its Galois closure \(N=L(\sqrt{d_L})\) are determined. The conductor \(f\) cyclic relative extension \(N/K\), where \(K={\mathbb {Q}}(\sqrt{d_L})\) denotes unique quadratic subfield \(N\), is proved to be form \(3^eb\) with \(e\in \lbrace 1,2\rbrace\), which admits statements concerning primitive ambiguous principal ideals, lattice minima, independent units in \(L\). \(m\) non-isomorphic fields \(L_1,\ldots ,L_m\) sharing common discriminant \(d_{L_i}=d_L\) \(L\)
منابع مشابه
An Infinite Family of Non-Abelian Monogenic Number Fields
We study non-abelian monogenic algebraic number fields (i.e., non-abelian number fields whose rings of integers have a basis of the form {1, α, α, . . . , αn−1} for some α). There are numerous results about abelian monogenic number fields, yet for the non-abelian case little is understood. As our main result, we find an infinite family of non-abelian monogenic degree 6 number fields.
متن کاملOn Quadratic Fields Generated by Discriminants of Irreducible Trinomials
A. Mukhopadhyay, M. R. Murty and K. Srinivas have recently studied various arithmetic properties of the discriminant ∆n(a, b) of the trinomial fn,a,b(t) = t n + at+ b, where n ≥ 5 is a fixed integer. In particular, it is shown that, under the abc-conjecture, for every n ≡ 1 (mod 4), the quadratic fields Q (√ ∆n(a, b) ) are pairwise distinct for a positive proportion of such discriminants with i...
متن کاملGenerated topology on infinite sets by ultrafilters
Let $X$ be an infinite set, equipped with a topology $tau$. In this paper we studied the relationship between $tau$, and ultrafilters on $X$. We can discovered, among other thing, some relations of the Robinson's compactness theorem, continuity and the separation axioms. It is important also, aspects of communication between mathematical concepts.
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletin De La Sociedad Matematica Mexicana
سال: 2022
ISSN: ['2296-4495', '1405-213X']
DOI: https://doi.org/10.1007/s40590-022-00469-w